§10.6—Hyperbolic Functions

The circle has its trig functions, and the hyperbola has, what are known as, hyperbolic functions. On the Unit Circle, any point along the circle has the coordinate $(\cos q, \sin q)$. On a branch of the Unit Hyperbola, any point has the coordinate $(\cosh q, \sinh q)$.

Guess what the "h" is for . . .

We read $\cosh q$ as "hyperbolic cosine of theta," and $\sinh q$ is similarly read "hyperbolic sine of theta." Just as the circular trig functions show up in many real-world applications, so do the hyperbolic trig functions. In fact, many applications of exponential functions are really hyperbolic trig functions in disguise.

Because we will be talking about the hyperbolic **functions**, we will use x as the input, rather than q.

Definition of the Hyperbolic Functions

$\sinh x = \frac{e^x - e^{-x}}{2}$	$\operatorname{csch} x = \frac{1}{\sinh x}$
$\cosh x = \frac{e^x + e^{-x}}{2}$	$\operatorname{sech} x = \frac{1}{\cosh x}$
$ tanh x = \frac{\sinh x}{\cosh x} $	$\coth x = \frac{1}{\tanh x}$

Notice that the functions $f(x) = \sinh x$ and $f(x) = \cosh x$ are the differences and the sums, respectively, of the two exponential functions $y = \frac{1}{2}e^x$ and $y = \frac{1}{2}e^{-x}$. Because of this, the graphs of $f(x) = \sinh x$ and $f(x) = \cosh x$ can be obtained by subtracting and adding the ordinates of the two exponential graphs.

Example 1:

Find the domain and range and any symmetry for the three hyperbolic functions shown above.

Notice how the graph of $y = \cosh x$ resembles a parabola. This mistaken identity is quite easy to make, especially without quantitative analysis. The graph of $y = \cosh x$ is actually called a **catenary curve**, from the Latin *catena*, meaning "chain." This is because a heavy chain (or cable) suspended between two fixed points at the same elevation will take the sagging shape of a catenary with

equation $y = a \cosh\left(\frac{x}{a}\right)$.

The most famous catenary (and mistaken parabola) of them all is the St. Louis/Gateway Arch.

Example 2:

Using the definition of $y = \cosh x$ and $y = \sinh x$, simplify $\cosh^2 x - \sinh^2 x$.

Just as there are many circular trig identities (and proofs), so there are many hyperbolic trig identities. For a list of many more, click <u>here</u>.

Let's talk calculus:

Example 3:

Using the definitions, find the derivatives of $y = \sinh x$ and $y = \cosh x$.

Example 4:

Using the definition, find the derivative of $y = \tanh x$.

Here are the derivatives of the Hyperbolic Functions

$$\frac{d}{dx} \left[\sinh u \right] = (\cosh u)u' \qquad \qquad \frac{d}{dx} \left[\coth u \right] = -\left(\operatorname{csch}^2 u \right)u' \\ \frac{d}{dx} \left[\cosh u \right] = (\sinh u)u' \qquad \qquad \frac{d}{dx} \left[\operatorname{sech} u \right] = -\left(\operatorname{sech} u \tanh u \right)u' \\ \frac{d}{dx} \left[\tanh u \right] = \left(\operatorname{sech}^2 u \right)u' \qquad \qquad \frac{d}{dx} \left[\operatorname{csch} u \right] = -\left(\operatorname{csch} u \coth u \right)u' \\ \end{array}$$

Example 5:

(a)
$$\frac{d}{dx} \left[\sinh\left(x^2 - 3\right) \right] =$$
 (b) $\frac{d}{dx} \left[\ln\left(\cosh x\right) \right] =$ (c) $\frac{d}{dx} \left[x \sinh x - \cosh x \right] =$

Example 6:

Evaluate $\partial \cosh 2x \sinh^2 2x \, dx =$

§12.5—Hyperbolic Functions

The circle has its trig functions, and the hyperbola has, what are known as, hyperbolic functions. On the Unit Circle, any point along the circle has the coordinate $(\cos\theta, \sin\theta)$. On a branch of the Unit Hyperbola, any point has the coordinate $(\cosh\theta, \sinh\theta)$.

Guess what the "h" is for . . .

We read $\cosh\theta$ as "hyperbolic cosine of theta," and $\sinh\theta$ is similarly read "hyperbolic sine of theta." Just as the circular trig functions show up in many real-world applications, so do the hyperbolic trig functions. In fact, many applications of exponential functions are really hyperbolic trig functions in disguise.

Because we will be talking about the hyperbolic **functions**, we will use x as the input, rather than θ .

Definition of the Hyperbolic Functions

$\sinh x = \frac{e^x - e^{-x}}{2}$	$\operatorname{csch} x = \frac{1}{\sinh x}$
$\cosh x = \frac{e^x + e^{-x}}{2}$	$\operatorname{sech} x = \frac{1}{\cosh x}$
$\tanh x = \frac{\sinh x}{\cosh x}$	$\coth x = \frac{1}{\tanh x}$

х

Notice that the functions $f(x) = \sinh x$ and $f(x) = \cosh x$ are the differences and the sums, respectively, of the two exponential functions $y = \frac{1}{2}e^x$ and $y = \frac{1}{2}e^{-x}$. Because of this, the graphs of $f(x) = \sinh x$ and $f(x) = \cosh x$ can be obtained by subtracting and adding the ordinates of the two exponential graphs.

Example 1:

Find the domain and range and any symmetry for the three hyperbolic functions shown above.

Example 2:

Using the definition of $y = \cosh x$ and $y = \sinh x$, simplify $\cosh^2 x - \sinh^2 x$.

$$\frac{2}{(\cosh x)^{2} - (\sinh x)^{2}} = \frac{2}{(\sinh x)^{2}} = \frac{2}{(\cosh x)^{2} - (e^{x} - e^{x})^{2}}{(e^{x} + e^{x})^{2} - (e^{x} - e^{x})^{2}} = \frac{2}{(\cosh x)^{2} - (e^{x} - e^{x})^{2}}{(e^{x} + 2 + e^{x})^{2} - (e^{x} - e^{x})^{2}} = \frac{2}{(\cosh x)^{2} - (e^{x} - e^{x})^{2}}{(e^{x} + 2 + e^{x})^{2} - (e^{x} - e^{x})^{2}} = \frac{2}{(\cosh x)^{2} - (e^{x} - e^{x})^{2}}{(e^{x} + 2 + e^{x})^{2} - (e^{x} - e^{x})^{2}} = \frac{2}{(\cosh x)^{2} - (e^{x} - e^{x})^{2}}{(e^{x} + 2 + e^{x})^{2} - (e^{x} - e^{x})^{2}} = \frac{2}{(e^{x} - e^{x})^{2} - (e^{x} - e^{x})^{2}}{(e^{x} + 2 + e^{x})^{2} - (e^{x} - e^{x})^{2}} = \frac{2}{(e^{x} - e^{x})^{2} - (e^{x} - e^{x})^{2}}{(e^{x} - e^{x})^{2} - (e^{x} - e^{x})^{2}} = \frac{2}{(e^{x} - e^{x})^{2} - (e^{x} - e^{x})^{2}}{(e^{x} - e^{x})^{2} - (e^{x} - e^{x})^{2}} = \frac{2}{(e^{x} - e^{x})^{2} - (e^{x} - e^{x})^{2}}{(e^{x} - e^{x})^{2} - (e^{x} - e^{x})^{2}} = \frac{2}{(e^{x} - e^{x})^{2} - (e^{x} - e^{x})^{2}}{(e^{x} - e^{x})^{2} - (e^{x} - e^{x})^{2}} = \frac{2}{(e^{x} - e^{x})^{2} - (e^{x} - e^{x})^{2}}{(e^{x} - e^{x})^{2} - (e^{x} - e^{x})^{2}} = \frac{2}{(e^{x} - e^{x})^{2} - (e^{x} - e^{x})^{2}}{(e^{x} - e^{x})^{2} - (e^{x} - e^{x})^{2}} = \frac{2}{(e^{x} - e^{x})^{2} - (e^{x} - e^{x})^{2}}{(e^{x} - e^{x})^{2} - (e^{x} - e^{x})^{2}}$$

Just as there are many circular trig identities (and proofs), so there are many hyperbolic trig identities. For a list of many more, click <u>here</u>.

Let's talk calculus:

Example 3:

Using the definitions, find the derivatives of $y = \sinh x$ and $y = \cosh x$.

Example 4:

Using the definition, find the derivative of $y = \tanh x$.

$$y = \frac{fanhx}{coshx}$$

$$y = \frac{sinhx}{coshx}$$

$$y' = \frac{(coshx)(coshx) - (sinhx)(sinhx)}{cosh^{2}x}$$

$$y' = \frac{cosh^{2}x - sinh^{2}x}{cosh^{2}x}$$

$$y' = \frac{1}{cosh^{2}x}$$

$$y' = \frac{1}{cosh^{2}x}$$

$$y' = sech^{2}x$$

$$so \frac{d}{dx} [fanhx] = sech^{2}x$$

Page 3 of 4

Here are the derivatives of the Hyperbolic Functions

$$\frac{d}{dx} \left[\sinh u \right] = (\cosh u)u' \qquad \qquad \frac{d}{dx} \left[\coth u \right] = -\left(\operatorname{csch}^2 u \right)u'
\frac{d}{dx} \left[\cosh u \right] = (\sinh u)u' \qquad \qquad \frac{d}{dx} \left[\operatorname{sech} u \right] = -\left(\operatorname{sech} u \tanh u \right)u'
\frac{d}{dx} \left[\tanh u \right] = \left(\operatorname{sech}^2 u \right)u' \qquad \qquad \frac{d}{dx} \left[\operatorname{csch} u \right] = -\left(\operatorname{csch} u \coth u \right)u' \end{aligned}$$

Example 5:

Example 6:

